Opções Konversi Decimal Ke Binárias


Hex to Decimal Converter Hexadecimal são números com base 16. Consiste em um conjunto de 16 números onde 0-9 são representados como 0,1,2,3,4,5,6,7,8,9 e 10-15 Representado como A, B, C, D, E, F. Não tem símbolos como 10 ou 11, por isso leva cartas como símbolo do alfabeto inglês. Decimal é o sistema base de 10 dez números e o Binary é um sistema de número de base 2 (0s e 1s). Use Hex to Decimal Converter para converter hexadecimal em binário (números com base 2) e números decimais (números com base 10). Converta Hexadecimal para Código Binário para adicionar esta calci ao seu site. Basta copiar e colar o código abaixo para sua página na qual deseja exibir esta calculadora. Converter Frações Decimais em Binário No texto correto, vimos como converter o número decimal 14.75 para Uma representação binária. Neste caso, citamos a parte fracionada da expansão binária 3 4 é, obviamente, 1 2 1 4. Embora isso tenha funcionado para este exemplo particular, é preciso uma abordagem mais sistemática para casos menos óbvios. Na verdade, existe um método simples, passo a passo, para calcular a expansão binária no lado direito do ponto. Vamos ilustrar o método convertendo o valor decimal .625 para uma representação binária. Passo 1 . Comece com a fração decimal e multiplique por 2. A parte do número inteiro do resultado é o primeiro dígito binário à direita do ponto. Porque .625 x 2 1 .25, o primeiro dígito binário à direita do ponto é um 1. Até agora, temos .625 .1. (Base 2). Passo 2 . Em seguida, ignoramos a parte do número inteiro do resultado anterior (o 1 neste caso) e multiplique por 2 mais uma vez. A parte do número inteiro deste novo resultado é o segundo dígito binário à direita do ponto. Continuaremos esse processo até obtermos um zero como nossa parte decimal ou até que reconheçamos um padrão de repetição infinito. Porque .25 x 2 0 .50, o segundo dígito binário à direita do ponto é um 0. Até agora, temos .625 .10. (Base 2). Etapa 3 . Desconsiderando a parte do número inteiro do resultado anterior (este resultado foi de .50, então, na verdade, não há parte do número inteiro para desconsiderar neste caso), multiplicamos por 2 mais uma vez. A parte do número inteiro do resultado é agora o próximo dígito binário à direita do ponto. Porque .50 x 2 1 .00, o terceiro dígito binário à direita do ponto é um 1. Então, agora temos .625 .101. (Base 2). Passo 4. Na verdade, não precisamos de um Passo 4. Nós terminamos na Etapa 3, porque nós tínhamos 0 como parte fracionada do nosso resultado lá. Daí a representação de .625 .101 (base 2). Você deve verificar novamente o nosso resultado expandindo a representação binária. Fracções binárias infinitas O método que acabamos de explorar pode ser usado para demonstrar como algumas frações decimais produzirão expansões infinitas de frações binárias. Nós ilustramos usando esse método para ver que a representação binária da fração decimal 1 10 é, de fato, infinita. Lembre-se do processo passo-a-passo para realizar essa conversão. Passo 1 . Comece com a fração decimal e multiplique por 2. A parte do número inteiro do resultado é o primeiro dígito binário à direita do ponto. Porque .1 x 2 0 .2, o primeiro dígito binário à direita do ponto é um 0. Até agora, temos .1 (decimal) .0. (Base 2). Passo 2 . Em seguida, ignoramos a parte do número inteiro do resultado anterior (0 neste caso) e multiplique por 2 mais uma vez. A parte do número inteiro deste novo resultado é o segundo dígito binário à direita do ponto. Continuaremos esse processo até obtermos um zero como nossa parte decimal ou até que reconheçamos um padrão de repetição infinito. Porque .2 x 2 0 .4, o segundo dígito binário à direita do ponto também é 0. Até agora, temos .1 (decimal) .00. (Base 2). Etapa 3 . Desconsiderando a parte do número inteiro do resultado anterior (novamente um 0), multiplicamos por 2 mais uma vez. A parte do número inteiro do resultado é agora o próximo dígito binário à direita do ponto. Porque .4 x 2 0 .8, o terceiro dígito binário à direita do ponto também é 0. Então, agora temos .1 (decimal) .000. (Base 2). Passo 4. Nós multiplicamos por 2 mais uma vez, ignorando a parte do número inteiro do resultado anterior (novamente um 0 neste caso). Porque .8 x 2 1 .6, o quarto dígito binário à direita do ponto é um 1. Então, agora temos .1 (decimal) .0001. (Base 2). Passo 5. Nós multiplicamos por 2 mais uma vez, ignorando a parte do número inteiro do resultado anterior (um 1 neste caso). Porque .6 x 2 1 .2, o quinto dígito binário à direita do ponto é um 1. Então, agora temos .1 (decimal) .00011. (Base 2). Passo 6. Nós multiplicamos por 2 mais uma vez, ignorando a parte total do resultado anterior. Vamos fazer uma observação importante aqui. Observe que este próximo passo a ser executado (multiplicar 2 x 2) é exatamente a mesma ação que tivemos no passo 2. Então, estamos obrigados a repetir os passos 2-5, depois retornamos novamente ao Passo 2 indefinidamente. Em outras palavras, nunca obteremos 0 como fração decimal de nosso resultado. Em vez disso, iremos passar pelos passos 2-5 para sempre. Isso significa que obteremos a seqüência de dígitos gerados nas etapas 2-5, ou seja, 0011, uma e outra vez. Assim, a representação binária final será. 1 (decimal) .00011001100110011. (Base 2). O padrão de repetição é mais óbvio se a resolvê-lo em cores como abaixo: 1 (decimal) .0 0011 0011 0011 0011. (base 2).

Comments

Popular Posts